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Abstract

Alternatives to the standard Poincaré section are proposed to cater for some conditions arising in the study of chaotic

ray propagation where the usual method of dimension reduction by the Poincaré section is inadequate because the driving

is not periodic. There are three alternatives proposed which all use the same surface of intersection, but which differ in their

use of the values of the dependent variables at the intersections of the rays with the surface. The new reduction techniques

are used to examine ray behaviour in a harmonically perturbed Munk profile which supports ray chaos. It is found that all

three techniques provide a graphical means of distinguishing between regular and irregular motions, and that the space of

the mapping associated with one of them is partitioned into nonintersecting regular and chaotic regions as with the

Poincaré section. A further model with quasiperiodic time dependence of the Hamiltonian is examined, and it turns out

that the quasiperiodic nature of the motion is revealed as Lissajous curves by one technique.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the study of long range ducted sound propagation in a deep ocean, which is
relevant for many practical applications. For example, underwater acoustic propagation has been extremely
important in predicting the performance of military sonar systems for several decades. For almost as long, and
increasingly so over the last 20 years, acoustic systems have been used for environmental and climatological
studies. One of these is the measurement of the average speed of sound over long range as indicator of global
warming, since the speed of sound is dependent on temperature. Communication and navigation are other
applications and an understanding of long range propagation is required in systems studies, an interesting
example being to define an infrastructure for integrated ocean observatories and navigation beacons.

The propagation of sound can be modelled approximately but to sufficient accuracy, using differential
equations for the ray paths which describe the geometrical optics approximation. The equations are developed
from the paraxial approximation to the acoustic wave equation and result in a parabolic equation valid for ray
paths a few degrees from the horizontal [16]. The ray equations depend on the sound speed variation with
position. Under the simplifying assumption that the ocean is layered, so that the sound speed depends only on
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. Tunnelling ray paths (right panel) in a wave guide given by the canonical Munk profile (left panel and Eq. (7)). Initial conditions

are: z0 ¼ za and j0 ¼ �1
�; 2�; . . . ; 12�.
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depth, the ray equations can be reduced to a system of two autonomous equations for the tangent of ray
grazing angle and depth of a ray, with range as the independent variable. Fig. 1 shows a set of ray paths for
one sound speed profile used to model the ambient conditions in the deep ocean.

When the layers are perturbed by a range dependent sound speed variation, the equations are
modified to include a driving term and under suitable conditions [3], chaos can result. The effect of
this on travel time was extensively studied by Smirnov et al. [13–15]. Ray chaos gives a reasonable account for
various features of wave propagation observed in data collected during long range sound transmission
experiments [1].

If ray chaos occurs, it implies that the acoustic field at a point beyond ray chaos is fully developed cannot be
predicted by ray-based theories. Assessing when it may occur is, therefore, an important issue. Ray chaos
occurs when the ray paths are unstable and the study of ray stability in various ocean environments is the
means to carry out the assessment. There are various numerical and geometrical tools, including those first
proposed by Poincaré, the Poincaré return map or the Poincaré section. This paper proposes further reduction
techniques as tools for geometrical investigations of ray stability.

First, the mathematical theory of ray propagation in a layered ocean is described and a simple model for a
harmonic sound speed perturbation is introduced. Ray stability in this model is investigated using the
Poincaré section method. An alternative model for background profile and periodic sound speed perturbation
is cited along with an alternative to the Poincaré return map more suited to this case, which is then applied to
the above introduced model. Three other graphical representations of propagation behaviour are then
proposed for the case where the perturbation is not periodic. They are first applied to the harmonic
perturbation example, and then a model with quasiperiodic perturbation is used to evaluate the third of the
reduction techniques. In the last section, we discuss our results, and compare them with results of another
approach.

2. Mathematical model

The results, in this paper, are based on a system of ray equations which is consistent with the standard
parabolic wave equation, introduced into underwater acoustics by Hardin and Tappert [8]. The solution of the
parabolic equation, c, is the envelope of the acoustic pressure of a constant frequency wave field. In a
cylindrical coordinate system it is written as

2ik0qrcþ qzzcþ k2
0ðn

2 � 1Þc ¼ 0. (1)

The index of refraction, n ¼ c0=c is generally a spatial function via the sound speed c ¼ cðr; zÞ. The reference
sound speed c0 is an arbitrary constant. The reference wavenumber k0 ¼ o=c0 involves o, the angular
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frequency of the wave field. Assuming the solution in form of a ray series,

c ¼ eiot
X1
j¼0

Aj

ðioÞj
, (2)

and substituting it into (1), the corresponding eikonal (Hamilton–Jacobi) equation results by taking the terms
of the leading order in o [9]:

qrtþ
c0

2
ðqztÞ

2
þ

1� n2

2c0
¼ 0. (3)

The eikonal has the dimension of time, and gives the surfaces of equal phase during propagation. It is also
often referred to as ‘travel time’ or ‘time-of-flight’. It can be shown that the solution of the Hamilton–Jacobi
equation can be reduced to solving a Hamiltonian set of ordinary differential equations. Its canonical form for
the pair of conjugate variables depth z and ray tangent p takes the form

z0 ¼ qpH; p0 ¼ �qzH, (4)

where the Hamiltonian of the ray system is

Hðr; z; pÞ ¼
p2

2
þ

1� n2

2
. (5)

The prime denotes differentiation with respect to range, the independent variable. The solution zðrÞ is referred
to as the ray path, and the z�p trajectory as the ray trajectory. In plotting the trajectory, the ray tangent is
replaced by the more intuitive variable, the ray angle: j ¼ arctanðpÞ. The second term of the Hamiltonian is
analogous to the potential function in mechanical systems. For calculations we use its linear approximation in
terms of the normalised sound speed C ¼ n�1: V ¼ ½1� C�2�=2 � C � 1, which is obtained by a Taylor
expansion about C0 ¼ 1, supposing small deviation of C from this value everywhere. With this, the ray
equations can be detailed in the following way:

z0 ¼ p; p0 ¼ �qzC. (6)

The canonical wave guide model. From Eq. (6), it is evident that C is required to specify the equations
fully. Our first choice is the range independent Munk profile [11], shown in the left panel of Fig. 1, and
described as

CðzÞ ¼ cðzÞ=ca ¼ 1þ eðe�ZðzÞ þ ZðzÞ � 1Þ; Z ¼ 2ðz� zaÞ=B. (7)

The minimum sound speed ca ¼ cðzaÞ is taken to be the reference sound speed. Following a common choice
[12], we take B ¼ za ¼ 1 km, ca ¼ 1:492 km/s, e ¼ 0:0057. This profile has a minimum which creates a
waveguide by confining the ray paths to tunnel around the sound channel axis. The waveguide feature of this
ocean model is analogous to potential wells in mechanical systems. The Munk profile is range independent, so
admits periodic ray paths like those in Fig. 1. These ray paths cross each other, and the wave fronts are said to
be folded. Folding occurs more often at longer distances from the source.

3. Periodically perturbed wave guide

The Munk profile is the simplest realistic model of the deep ocean sound speed variation, being derived from
equilibrium conditions for ambient oceanographic variables [11]. Variation in conditions can result in
displacement of water particles due to a number of oceanographic effects. This produces a variation in sound
speed known as internal wave. The fine structure of internal waves which is attributed to vertical water parcel
displacement, the dominant contribution to small scale variability regarding acoustic ray stability, can be
described by the Garrett–Munk spectrum [6]. Due to the small magnitudes and range scales, this variation is
often referred to as a perturbation of the background structure.

A realistic model of the sound speed perturbation proposed in Ref. [5] involves up to 50 randomly phased
modes with harmonic range dependency and some depth structure, consistent with the Garrett–Munk
internal-wave spectrum [6]. A simple model from Ref. [17] takes an approximation for the first mode of
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Fig. 2. Poincaré section of ray trajectories. Parameters of single mode perturbation are: A ¼ 0:01 and R ¼ 10 km. Initial conditions are:

z0 ¼ za and j0 ¼ �k=2; k ¼ 2�; 3�; . . . ; 24�.
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wavelength R and amplitude A, which is superimposed onto the background sound speed structure

dCðr; zÞ ¼ A
2z

B
e�2z=B sin

2pr

R

� �
. (8)

Poincaré section. In a range dependent environment the ray trajectories partition a three dimensional (3D)
extended phase space. (The 2D phases space is extended by the dimension of the independent variable, range.)
It is convenient to reduce the dimension of the phase space of the dynamics while aiming to preserve all its
important features. The standard way to do this for a periodic range dependency of the driving is to take the
stroboscopic Poincaré sections of ray trajectories. In doing so, the phase space is bounded by considering only
the modulus of the range coordinate with respect to the wavelength, rmod ¼ modðr;RÞ. This phase space can be
viewed as cylindrical. The surface of intersection is chosen as a surface at constant range. The subsequent
intersecting points being linked by segments of ray trajectories, and therefore the following mapping can be
established for their connection:

ðznþ1; pnþ1Þ ¼ Pðzn; pnÞ; P ¼ ðPz;PpÞ. (9)

In Eq. (9) P is referred to as the Poincaré return map [7], and the Poincaré sections can be understood as plots
of its trajectories. Fig. 2 shows the Poincaré sections of 23 ray trajectories of the perturbed ray system.

The Poincaré return map is one means of studying ray stability graphically. It can be shown that the
Poincaré return map of a Hamiltonian system inherits the area preserving property of the flow, and is,
therefore, an area preserving mapping. Consequently, the Jacobi determinant for the map is unity

qzPzqpPp � qpPzqzPp ¼ 1. (10)

The type of trajectory motion, chaotic or regular, can be identified by constructing a Poincaré section [10].
Where there are closed loops, called invariant curves as in Fig. 2, the motion is regular. Points filling a finite
area correspond to chaotic trajectories. Motion of the former type has one constant, while motion of the latter
type has none. That is, there are not enough constants in either case to render the ray system integrable. It is
noted that the phase space is partitioned into nonintersecting regular and chaotic regions, as is predicted by
the KAM-theory [10].

One feature to highlight here is the five-fold island structure in connection with a nonlinear (primary)
resonance. The Poincaré sections of resonant trajectories are constituted by a finite number of points (fixed
points of the motion), which are located at the centre of the islands. In such cases the two frequencies of the
motion are commensurable, i.e the winding number is rational (in our example being 5:1). Secondary
resonance is prompted by the island structure around each island of the primary resonance [10].
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An alternative map. In Ref. [4] a model with a bilinear sound speed profile was studied in which for
convenience the zero of the depth coordinate was set at the channel axis. To model perturbation, the sound
speed gradient above the channel axis is a periodic function of range which results in the following potential
for the Hamiltonian:

V ðr; zÞ ¼
gzð1þ ðe=2Þ cosðkrÞÞ; z40;

�hz; zo0:

(

For such a simple model, analytical solutions can be found for ray paths above and below the channel axis and
from these the authors derived an area preserving return map:

rnþ1 ¼ rn þ fn þ gfnþ1 þ e sinðrnÞ, (11)

fnþ1 ¼ fn þ e½sinðrnÞ þ sinðrn þ fn þ e sinðrnÞÞ�. (12)

Here, g ¼ g=h, rn ¼ krn and fn ¼ 2kjn=g, where jn’s are the positive ray angles at the channel axis separated
by one ray cycle, and rn is the corresponding range. (See Fig. 3.) From the construction of the model, it follows
that the surface of intersection is at the channel axis. Only the upward refracted ray paths are considered
(hence the return map). The choice of such a surface of intersection to reduce dimensionality is one alternative
to the stroboscopic Poincaré section.

With general models of the sound speed profile when the resulting ray system is non-integrable, the map
associated with a surface of intersection at the axis depth cannot be obtained analytically. Yet they exist, and
we can treat them symbolically, i.e.,

ðrnþ1; pnþ1Þ ¼M�ðrn; pnÞ; M� ¼ ðM�
r ;M

�
pÞ. (13)

This alternative map can also be presented graphically. Note, however, that the evolution parameter, range, is
monotonically increasing at subsequent intersections, and it is desirable when plotting to compress the range.
For this purpose the range modulo the wavelength of the range variation is used and the trajectories of a
modified map M are plotted. This is shown for the example in Fig. 4. This map preserves all important
features of the Poincaré return map. Invariant curves indicate regular motion; the invariant curves and the
area filling sections of chaotic ray trajectories belong to nonintersecting regions in the space of M; resonant
trajectories are associated with fixed points of M.

4. Other reduction techniques

The existence of the two maps discussed above, P and M, relies on the fact that for a periodic perturbation
it is possible to make the 3D phase space cylindrical and so bounded. In any other case, i.e. non-periodic
driving or no driving at all, these maps are not uniquely defined. Only M� is well defined, but there is no
obvious way to compress the range variation and so it does not support graphical studies.

For an ocean model with no variation of sound speed with range, the ray trajectories give a unique partition
of the ray tangent-depth phase space. Hence the dynamics can be conveniently studied by the 2D phase
portrait. Fig. 5 shows ray trajectories which sample the phase portrait for a Munk profile. It is possible to
reduce the dynamics using intersections with a surface in two ways. The surface of intersection is again at the
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channel axis, but both positive and negative going ray intersections are allowed. Note that the ray tangent pn

may be either positive or negative; the range rn is monotonically increasing.
The representation implied by the first reduction technique is a plot of the ray tangent, pn, the value at the

current intersection against the difference between this value and the one at the previous intersection,
pn � pn�1. The representation implied by the second reduction technique is a plot of pn, against the difference
between the corresponding range and the one at the previous intersection, rn � rn�1. Fig. 6 shows the
representations of the unperturbed ray system with both reduction techniques. Note that, as mentioned
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earlier, we plot a more intuitive variable j, the ray angle, instead of the ray tangent p. With the first
reduction technique, which ignores range (Fig. 6a), information can be extracted from the phase portrait
(Fig. 5). The points lie on a straight line with a gradient of 0.5. This is due to the symmetry of the phase
portrait ðpn ¼ �pn�1Þ, so that pn � pn�1 ¼ �2pn�1 ¼ 2pn, and also pn=ðpn � pn�1Þ ¼

1
2
. Using the second

reduction technique, involving range values as well (Fig. 6b), information can be provided about the
lengths of the upper and lower loops of the ray paths: they are monotonic smooth functions of the ray take-off
angles.

We now apply these techniques to the harmonically driven ray system. The results are shown in Fig. 7. Note
that values are taken only at every other intersection, i.e. the plots are of p2n against either p2n � p2n�1 or
r2n � r2n�1. These representations preserve two features of P and M. Closed loops and area filling points,
respectively, indicate regular and chaotic motion; and resonant trajectories are associated with a finite number
of points in the centre of islands. Both primary and secondary resonances are visible. The third feature of
nonintersecting regular and chaotic regions does not apply. Closed loops may intersect other loops or the area
filled by points due to chaotic motion. That is, coordinates need not belong to one trajectory uniquely, and so
there are no associated maps.

It is worth noting that the loops and area filling points in Figs. 7a and b are confined by envelopes. The
envelopes lie along curves already seen in Fig. 6, and their width clearly depend on the perturbation strength.

A third representation, shown in Fig. 8, is to plot the differences of successive ray tangents against the
differences of the corresponding ranges, at every other intersection, i.e. p2n � p2n�1 ¼ Dpn against
r2n � r2n�1 ¼ Drn. This plot preserves the main features seen in Fig. 7b; however, the range on the vertical
axis has been doubled due to taking differences of successive tangents. Another difference is that loops are
replaced with simple curve segments, and no curve segment overlaps any other nor does it merge into the
chaotic sea; i.e. the space associated with this representation is partitioned into nonintersecting regular and
chaotic regions.
5. Quasiperiodic driving

If there are two or more internal waves whose periods are incommensurable, the driving is said to be
quasiperiodic. Although, it is periodic with the period which is the smaller of the smallest common multiple or
the largest common divisor of all the periods involved. For higher mode numbers this period can be very large,
so that the application of maps P and M is not feasible. It is often the case for N ¼ 2 already. Therefore, such
systems need different treatment.
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For simplicity, consider just two waves, and let the second mode have the same depth variation as the first
mode but with wavelength R2 and a phase shift rj, so that

dCðr; zÞ ¼
2z

B
e�2z=B A1 sin

2pr

R1

� �
þ A2 sin

2pðrþ rjÞ

R2

� �� �
. (14)
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Fig. 9 shows the representation of the ray dynamics using the last reduction technique introduced above.
Regular and chaotic motions are, respectively, indicated by either curves similar to the Lisajous curves or area
filling points. The curves of regular motion intersect either other such curves or merge into the chaotic sea,
therefore, the property of nonintersecting regular and chaotic partition of the space associated with the
representation does not hold with quasiperiodic driving. The blown-up curve in Fig. 9, which is similar to a
Lisajous curve, is not closed.

6. Summary and discussion

For sufficiently small perturbation a fraction of the Poincaré sections of periodically perturbed ray
trajectories are regular, and the region that they belong to is immersed into a chaotic sea in phase space
(Fig. 2). This is consistent with predictions of the KAM-theory. We have seen that other representations of the
dynamics, those associated with map M and the third one of the newly introduced reduction techniques,
provide graphical means for drawing the same conclusion.

More realistic models of the perturbation involve a sum of N range-periodic internal-wave modes. Most
generally the corresponding Hamiltonian is assumed to have quasiperiodic range dependency, which means
that the internal-wave lengths are allowed to be incommensurate. It was shown in Ref. [2] that for such
systems the KAM-theory has implications similar to those cited above for systems with a range-periodic
Hamiltonian. The argument is based on the fact that systems of NX2 can be transformed into an N þ 1
degrees-of-freedom autonomous system, whose phase space can be bounded by multiple use of the modulo
function. (For details refer to Ref. [2].) For smaller N’s it is feasible to illustrate the implications of the KAM-
theory by viewing multiply sectioned trajectories. In practice, for N ¼ 2, this means viewing trajectories at
integer multiples of R1, then, plotting those points in the ray tangent-depth plane which satisfy the inequality
jmodðr;R2Þ � r0jod. Here, r0 is an arbitrary constant between 0 and R2, and d controls the accuracy of the
numerical procedure. Such multiply sectioned trajectories for the ray system with the quasiperiodic
perturbation introduced in the previous section, similar to those in the referenced paper, are displayed in
Fig. 10.

Given a certain range of simulation, the number of points to plot is increasing with increasing d. The
accuracy, however, whether these points in phase space are close to the sectioning surface is decreasing.
In contrast, with the approach presented above, the points which constitute a curve like the one magnified in
Fig. 9 lie on the surface of intersection at the axis depth to within the accuracy of a root-finding procedure,
and the range of simulation determines solely the number of points to plot. Furthermore, Fig. 9 supports the
idea of nonintersecting regular and chaotic regions in the phase space of the ray equations, i.e. a dense set of
stable solutions (readily demonstrated in Fig. 10). Note the cascade of sections of regular orbits.
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It is pointed out that increasing N implies higher dimensionality of the problem. In Ref. [2] it was associated
with the higher ð2ðN þ 1ÞÞ dimensional phase space of the equivalent autonomous system. Here it is
manifested by the following. We consider plots of the representations associated with the third reduction
technique introduced above in the case of N ¼ 0, 1, 2. With no perturbation ðN ¼ 0Þ, sectioning the
trajectories results in single points; with harmonic perturbation ðN ¼ 1Þ the sections of regular trajectories are
(nonintersecting) curve segments. In case of the simplest quasiperiodic perturbation ðN ¼ 2Þ the increasing
dimensionality is indicated by the intersecting sections of regular trajectories (Fig. 9).
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